Malt welcome

¡Bienvenido al perfil Malt de Luca !

Malt te da acceso a los mejores talentos freelance para tus proyectos. Ponte en contacto con Luca para hablar de tus necesidades o busca otros perfiles en Malt.

Luca Massimo

Data Scientist
2 recomendaciones
  • Tarifa aproximada
    400 € /día
  • Experiencia8-15 años
  • Tasa de respuesta100%
  • Tiempo de respuesta1h
El proyecto se dará por comenzado una vez hayas aceptado el presupuesto de Luca.
Localización y desplazamiento
Localización
Madrid, España
Trabajo a distancia
Lleva a cabo sus proyectos principalmente en remoto
Verificaciones

Código de conducta freelance firmado

Consultar el código
E-mail verificado
Influencia
0Seguidores
8Repositorios
0Gists
17617Reputación
193Bronce
119Plata
39Oro
Idiomas
Categorías
Estos freelance también tienen todo lo que estás buscando
Agatha FrydrychAF

Agatha Frydrych

Backend Java Software Engineer

Baptiste DuhenBD

Baptiste Duhen

Fullstack developer

Amed HamouAH

Amed Hamou

Senior Lead Developer

Audrey ChampionAC

Audrey Champion

Web developer

Habilidades profesionales
Luca en pocas palabras
Luca Puggini is a dynamic person and a fast learner with a strong interest in quantitative and computational subjects. He has a deep knowledge of machine learning, artificial intelligence, mathematics and statistics and a wide experience in computational intelligence techniques applied to large datasets. He is also passionate about programming, and experienced in several programming languages. In particular he has an advanced knowledge of Python and its numerical libraries (tensorflow, sklearn, numpy, scipy, pandas, statsmodels) and a working knowledge of R, Scala, C and Matlab.

Experiencia
  • Corvil / Pico Trading
    Data Scientist
    HIGH TECH
    octubre de 2016 - Hoy (8 años y 4 meses)
    Madrid, España
    Development of algorithmic solutions to monitor network efficiency in high frequency trading platforms.
    Main achievements:

    Development algorithms for anomaly detection (distribution agnostic) in time series at scale
    (monitoring up to 50k metrics).

    Analysis of diagnostics data for common product root cause detection (customer support)

    Development of pipelines for high volume data collection.
    Python Data science Scikit-learn Big Data SQL
  • Intel
    Data Scientist (Visiting Researcher)
    HIGH TECH
    diciembre de 2013 - septiembre de 2016 (2 años y 9 meses)
    Dublin City pre 1849, Irlanda
    Researcher in the Data Analytics department at Intel. Development of systems for efficient real time
    data analysis in a semiconductor manufacturing contest.

    Main achievements:

    Development of anomaly detection systems for wafer processing.

    Predictive model for high dimensional Optical Emission Spectroscopy data.

    Unsupervised features selection algorithm for robust and interpretable dimensionality reduction.

    Peak calibration system through the use of genetic algorithms
    python matla R SQL
  • Google
    Developer (Student Developer)
    HIGH TECH
    mayo de 2015 - agosto de 2015 (3 meses)
    Dublín, Irlanda
    Funded by Google as part of the GSoC 2015 project to develop a Generalized Additive Models toolbox
    for the python statsmodels library. The project was under the supervision of Josef Perktold from McGill
    University. The code and the library are available at
    https://github.com/statsmodels/statsmodels.

    Achievements:
    - Development of a GAM toolbox for python. A contributions of around 2300 lines of python code.

    python Git
2 recomendaciones externas
NM
GP

Niall Moran y 1 otra persona recomiendan a Luca

Niall MoranNM
Niall Moran
ICHEC
29/11/2019
I worked with Luca on the data science team at Corvil. He is a very skilled programmer and experienced with mathematics, machine learning and data science methodologies. Luca also has an ability to come up with creative solutions to problems.
Gregorio PalmasGP
Gregorio Palmas
Datalogic S.R.L.
29/11/2019
He is very good in programming and complex problem solving.
Formación
  • PhD Data Analytics and Machine Learning
    Maynooth University
    2016
    Research on machine learning and statistics applied to the semiconductor manufacturing industry. Particular focus is on dimensionality reduction, predictive modelling and anomaly detection. The research is carried under the supervision of professor Seán McLoone from Queen’s University Belfast
  • Master’s Degree in Mathematics
    Tor Vergata University
    2013
    Study of applied mathematics with particular focus on applied probability, statistics and numerical analysis. The Master’s Thesis was written under the supervision of professor Arnoldo Frigessi and Gianpaolo Scalia Tomba
  • Bachelor Degree in Pure and Applied Mathematics
    University of Tor Vergata
    2011
    General topics in pure and applied mathematics.